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ABSTRACT

High purity aluminum was quenched from the liquid state and

specimens were examined by transmission electron microscopy. Very

high densities of defects in the form of perfect loops, imperfect

loops, and small black spots were observed. The vacancy concentration,

as deduced from the number and size of defects, increase with in-

creasing temperature at a much slower rate in the liquid than in the

solid. Both the vacancy formation energy and the entropy factor

appear to be considerably reduced above the melting point. Also,

a discontinuity in the vacancy concentration is observed at the

melting point.
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1. INTRODUCTION

Previous experiments on the quenching-in of vacancies in metals

have been limited to solid state quenching with cooling rates of the

order of fifty thousand degrees per second. It is now well known

that in quenched metals, vacancies condense out in various dislocation

configurations, namely, perfect loops, imperfect loops, or tetrahedra,

depending upon stacking fault energy, purity and vacancy supersatura-

tion (see reviews in Refs. 1 and 2). The quenching-in of vacancies

in high purity solid aluminum has been studied previously by resis-

(4,5) (6-8)
tivity4 , transmission electron microscopy , and simultaneous

x-ray and dilatometry (9) . The vacancy concentration can be expressed

as c - A exp-(Qf/kT) where, for aluminum, A - 8 and Qf - 0.76 eV. At the

o -4melting point of aluminum (933°K), the vacancy concentration is 6 x 10 .

The method of rapid quenching from the melt, described by Duwez and

Willens (3) , offers the possibility of investigating the quenching-in

of vacancies from the liquid state. It has been estimated that the

cooling rates achieved by this quenching technique are of the order of

one or two million degrees per second. The experiments described in this

paper are carried out on quenched liquid aluminum. Both the variations

of vacancy concentration with quenching temperature and the type of

vacancy defects that were formed have been investigated.

2. EXPERIMENTAL PROCEDURE

The aluminum used in this investigation had a purity of 99.996%,

magnesium being the predominant impurity (30 ppm). The foils produced
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by this quenching technique were non-uniform in thickness, the average

thickness being of the order of several microns. However, there were

regions within the foil which were thin enough to be viewed in trans-

mission electron microscopy without any further thinning being necessary (10 ) .

Only these regions were examined to determine the vacancy concentrations.

In most cases, the foil was observed immediately after quenching with-

out aging at elevated temperatures. Some foils were aged for several

minutes between 1000C and 1400C. No difference in structure between

the as-quenched foil and the aged foils was noticed except for some

loop growth. The high concentration of vacancies which were retained

by the queuch resulted in the formation of Frank-sessile loops, perfect

loops, and small dark spots which may be very small loops or vacancy

clusters. The vacancy concentration was determined from the size and

density of loops using the formula c - vr 2bn/t, where n is the number

of loops per cm 2 , r the loop radius, b the Burgess vector (a/3<111>

for Frank loops, a/2 <110>, for perfect loops) and t the foil thickness.

For the case of spherical clusters with radius r this formula would

underestimate the vacancy concentration by a factor of 4r/3b. The actual

foil thickness was of the order of 3 x 10-5 cm, however, a value of 10- 5 cm

was adopted for the calculations in view of the fact that vacancy denudation

occurs at both the top and bottom surfaces of the foil.

3. RESULTS

Typical electron micrographs from foils quenched from various

temperatures above the melting point are shown in Figs. 1 to 6.

Quenches from below 12000C produce large numbers of loops or clusters.



Figure 1. Defect structure in aluminum quenched from 1165 0C
showing high density of loops and black spots.
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Figure 2. Defect structure in aluminum quenched from 7250C. There
is a narrow denuded zone between 500 and 1000 A wide,
next to grain boundaries.
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Figure 3. Defect structure in aluminum quenched from 765°C. A
zig zag dislocation has produced a loop-free area A.
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Figure 4. Loops and black spots in a (11l) area after quenching
from l650C. Operating reflection (210). Notice
absence of ioops in the (1ll) plane shoving they are
all of the Frank-sessile kind (b - a/3 Cl 111])
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Figure 5. Small grain size in Al quenched from 9000C. By
tilting the specimen, the loops in region A can
be brought into contrast. Large perfect diamond-
shaped loops are visible at B.



Figure 6. Aluminum quenched from 12600C. Notice *the absence of
loops and the high density of dislocations making sub-
boundaries.
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At higher temperatures few loops are observed but the density of

dislocations is very large (Fig. 6). Below 12000C most of the dis-

locations appear to be in the form of loops except as shown at A in

Fig. 3 where a zig zag dislocation line exists in a loop-free area.

Apparently many dislocations are generated by quenching from tempera-

tures greater than 12000C and these effectively sweep up most of the

retained vacancies. In addition, the quenching efficiency is probably

reduced with increasing temperature of the melt due to the thermal

capacity of the sample. Thus some vacancies will have time to escape

from the thin regions of the foil during cooling. As shown in Figs. 1

and 2 very high densities of defects are observed after quenching from

below 12000C. The grain size is very small (1/4 to IA) and the grains

have nearly equilibrium shapes (Fig. 5). Another interesting feature

is that the width of the vacancy denuded zone is between 500 and

1500 X which is much less than that observed in aluminum quenched from

below the melting point (1°i). This fact and the observed high densities

of defects indicate that numerous vacancies have been quenched-in.

Perfect and imperfect dislocation loops have been resolved as

well as small spherical black spots (Figs. 3 and 4) which could be

small loops or vacancy clusters. These three types of defects are

observed in specimens quenched from below 12000C. Figure 4 is an

example of an area in (111) orientation. Only three orientations of

loops are visible corresponding to the traces of (111) (111) and (111)

planes with the foil surface. Loops in the plane of the foil are not

visible, indicating that the Burgers vector must be normal to the foil

surface. This must mean that the loops are of the Frank kind since
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perfect loops would have all four possible orientations visible in the

(Ill) orientation. Most of the very small loops do appear to be Frank

loops, but larger, perfect loops, many of which are diamond-shaped, are

also observed (for instance at B, Fig. 5).

Table I gives the number of defects per cm3 and the average vacancy

concentration calculated on the basis of perfect loop defects. These

results are probably on the low side because 1/ not all of the vacancies

may have condensed to the loops, 2/ not all loops may be visible because

of contrast conditions (Fig. 5) and, 3/ many of the defects may be

spherical clusters and the concentration calculations, which assume loops,

would underestimate the concentration.

TABLE I

Quenching Treatment Loop radius (A) Number of Average

Temperature Loops per Vacancy
° 3 Concentration

(oC:) cC x 103

725 As Cast 100 1.3 x 1016 1.04

820 2 Min. at 250-625 1.6 x 1015 1.34

1360C

1030 As Cast 100 1.5 x 1016 1.29

1165 As Cast 110 1.4 x 1016 1.60

A plot of In c against reciprocal temperature is shown in Fig. 7. It

can be seen that there is a sharp change in slope and a discontinuity in

vacancy concentration at the melting point. The equation of the line,

representing quenches from the liquid, is c - 4 x 10 - 3 exp-(0.11/kT).
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DISCUSSION

The very high and uniform densities of defects observed in these

experiments indicate that very large supersaturations of vacancies are

retained by rapid quenching from the liquid state. The appearance of

three kinds of defects, namely, perfect loops, imperfect loops, and

small black spots, is indicative of various stages in the annihilation

of vacancies depending upon local conditions of vacancy supersaturation

and quenching stresses. Another possibility is that the defects may form

inefae(15) (16,17)
at the solid-liquid interface (  . Previous calculations show

that stable vacancy clusters or loops trapped behind the interface would

not diffuse back to the liquid due to the high interfacial velocity

(estimated to be 10 cm/sec.). These calculations are slightly in error

because no change in the vacancy formation energy between the liquid and

solid states and no discontinuity in equilibrium vacancy concentration

are assumed.

The increase in vacancy concentration at the melting point contributes

to the entropy of melting. Assuming a random two-component system, the

increase in entropy on melting due to a change in vacancy concentration

is ( 1 1 )

AS- [cin c1  c2 in c2 + (l-cl)t n (1-cl) - (1-c 2 )n (1-c 2 )J

where c is the vacancy concentration in the solid and c2 the vacancy

concentration in the liquid. Using c1 - 6 x 10-4 and c2 0 1 x 10-3 at

the melting point, the entropy change is 2.9 Nk x 10-3 . The total
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entropy change on melting, as deduced from the heat of fusion, is 1.4 Nk

for aluminum. Therefore, the entropy increase associated with the

change in vacancy concentration is very small. The largest contribution

to the entropy change is probably configurational entropy, since there

is evidence that the vibrational frequencies, the only other source of

entropy associated with melting, is not appreciably altered (12 '1 3'14 ).

Perhaps the most interesting results obtained in this investigation is

that within the experimental limits of the electron microscopy technique,

the vacancy concentration is relatively insensitive to temperatures above

the melting point. The entropy factor and the formation energy of a

vacancy are both smaller in the liquid than in the solid. The ratio is

about three orders of magnitude in the entropy factor and about a factor

of seven in the formation energy.
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